Math 110
Winter 2021
Lecture 20


```
Comparing two Population Standard deviations
             J & T2:
                  Sample 1 | Sample 2
Ho: 01 = 02
                       Sz=
                  Siz
H1: 01 + 02 TTT
                       n2=
                  m_{l}z
                             STAT
           f-1 Nd5=n1-1
                            TESTS
P- Value
                  Ddf=n2-1
                             2-SampF Test
P-Value ≤ α >> Ho invalid & H1 Valid
Reject the claim OR FTR the claim
```

Consider the Chart below:

Sample 1 | Sample 2 | D verisy S1 | S2 |

$$S_1=9$$
 | $S_2=5$ | Quse $\alpha=.02$ to test the $m_1=12$ | $m_2=10$ | Caim that $\sigma=\sigma=0$.

How $\sigma=\sigma=0$ | Caim that $\sigma=\sigma=0$ | STAT | TESTS |

P-value P=.088 | P-v

```
S=10
                                5=14
Afternoon class: n=12 =85
use (x=1) to test the claim that two pop.
 Standard deviations are different.
                        T + T2
                         Asternoon | Morning
H_0: \sigma_1 = \sigma_2
                         S1=14 | S2=10
 H1: OT = Oz claim, TTT
                          m=12 | M2=8
CTS F= 1.96
                    P-value> \infty
P- value P=.382
                     .382 .1
2-SampFTest Ho Valid & Ho invalid
                                 Invalid claim
                                 Reject the
                                  daim
```

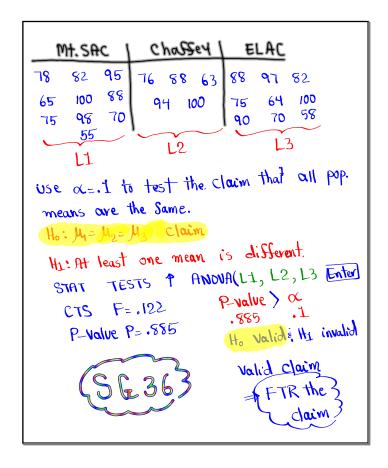
```
I Selected 8 Semale Students, here are their ages.
                                   Round to a
                         <del>z=29</del>
                 40
                                     whole #.
I selected 10 male students, here are their ago
                       28 \ \ \bar{\chi} = 32
                                       Round ta
                   ı٩
 24
                                        whole *.
                        35
Test the claim that there is no differences
 between two Pop. Standard deviations. No of
                           Males | Females
 Ho: \sigma_1 = \sigma_2 claim
                           S= 11 | S=7
  H1: 17 + 12 TTT
                            n=10 | n= 8
                                51>52
 CTS F= 2.469
                        P-value oc
  P-value P = . 246
                          .246
                       Ho Valid & HI invalid
    2-Sampf Test
                         Valid claim
                         → Fail-to-Reject
                              the daim.
```

```
Comparing at least 3 pop. means:

Ho: M_1 = M_2 = M_3 = \dots = M_K

H1: At least one mean is different. RTT

CTS F = STAT TESTS [P]


P value P = ANOVA(LL, L2, L3, \dots)

P value ANOVA(LL, L2, L3, \dots)

P value ANOVA(LL, L2, L3, \dots)

P value ANOVA(LL, L2, L3, \dots)

Reject the claim OR FTR the claim
```


mt. sac	Ch	nasse	۲ ۱	Ci	trus	Cul	1 Po	١٧
25 32 18	18	27	36	17	29	29	38	42
27 29 35	40	25	20	33	24 30	25	35	45 20
19		~		~	30 3	י ייי	\sim	~
LI.		L2		_			14	,o
Test the Clair	n th	at m	ot	all	Pop.	mea	ns w	
the Same.	Ho:	Ju, =	= M 2	=)	43=/	14		
No ∝ ⇒.05	Hi.	· At	leas	1.0	ne m	nean	is	claim
· ·		di	Ster	ent				
1	90 a T					_	/	,
(TS F=3.					1 P-	value	. <u>L</u> o	ر_
D Malue P=	.04	4			\ .	, 04 4	•	05
D Malue P=	.04	4 L2,1	L3,		\ .	, 04 4	સ (05 H _{1.} Vahid
P_Value P= ANOVA(.04 LL,	L2,1	L3,		\ .	, 04 4	id (Vali	05 H ₁ Vahid d daim
P_Value P= ANOVA(IS we choo	.04 LI, se a	L2,1	L3,		\ .	, 04 4	id (Vali FT	05 H ₁ Vahid d daim i R the
P_Value P= ANOVA(IS we chook P_Value N	.04 LI, se a	L2,1	_	L4)	\ .	, 04 4	id (Vali FT	05 H ₁ Vahid d daim
P_Value P= ANOVA(IS we chook P_Value N	.04 LI, se a	L2,1 =.02	inua	L4)	\ .	, 04 4	id (Vali FT	05 H ₁ Vahid d daim i R the
P_Value P= ANOVA(IS we choo	.04 LI, se a	L2,1 =.02	inva ect	L4) lid the	\ .	, 04 4	id (Vali FT	05 H ₁ Vahid d daim i R the
P_Value P= ANOVA(IS we chook R Malue N	.04 LI, se a	L2,1 =.02	inua	L4) lid the	\ .	, 04 4	id (Vali FT	05 H ₁ Vahid d daim i R the

	Ho Valid	Ho invalid
Support Ho	\checkmark	TypeII
Reject Ho	Type I	√

Final Exam

- 1) SQ1 SQ28 + 2-SampFTest + ANOVA
- 2) Review exam 1 & Exam 2
- 3) Starts at 4:45 Ends at 7:30
- 4) 9 Pages,